
Capturing and 

reversing wireless 

keyboard signal
SDR ISRAEL – MEETUP #6 – SEPTEMBER 1, 2016

ARIK YAVILEVICH



Introduction

 Goal: Learning more about radio by capturing and analyzing 

wireless transmissions of a wireless keyboard and mouse

 Has been done before but usually not with RTL-SDR

 Apparently not as easy as it might seem

 Fun

 Process: Identify, capture, get bytes/bits, reverse protocol



How to do reversing

 Based on EFF Reverse Engineering FAQ

 Don’t violate contracts (NDA, license agreement, etc.)

 Own the hardware and software

 Don’t break encryption

 If capturing data

 Publicly accessible network

 Or obtaining consent

 https://www.eff.org/issues/coders/reverse-engineering-faq

https://www.eff.org/issues/coders/reverse-engineering-faq


Identify and capture



2.4Ghz space

(common ISM)

 Most of your Consumer Electronics will be in the 2.4Ghz range

 Wi-Fi

 Bluetooth

 Proprietary protocols

 Almost any device I wanted to experiment with was in this range

 Not in range of RTL-SDR

 Wi-Fi and Bluetooth specifically are too complex to capture with RTL-

SDR (especially for a beginner)

 Wide

 Hopping



Down converter

 L.O 1998MHZ MMDS down 

converter 2.2-2.4GHz

 L.O Frequency: 1998MHz

 L.O Stability: ≤±30KHz 

 Aliexpress: 12$ device, 10$ 

shipping, 5$ power = 27$

 Came with a 18V power injector

 Can work with a battery

 Vout = 8V if Vin>10.5V

 https://en.wikipedia.org/wiki/Digit

al_down_converter

https://en.wikipedia.org/wiki/Digital_down_converter


Down converter - inside



Down converter - inside 2



Scanning

 QSpectrumAnalyzer was mostly useless

 Busy spectrum

 Didn’t see all devices

 Was worse with rtl_power_fftw

 Decided to focus on one device that was showing in the scanner

 Rapoo E2700 wireless keyboard and track pad

 Fosphor is awesome (osmocom_fft –F)

 DEMO

 Try to identify visually



Scanning – screen shot



Gathering info from open sources

 Rapoo E2700

 FCC ID: PP2E2700

 https://fccid.io/PP2E2700

 What is important?

 Frequencies

 Modulation

 Data rate

https://fccid.io/PP2E2700


Demodulation

 One approach, rtl_fm

 rtl_fm -f 447m -s 2000k -g0 > rtl_fm_dump

 You get binary: 16bit shorts, little endian

 Another approach, GnuRadio

 DEMO

 You get binary: 32bit floats, little endian

 Open in Audacity or Baudline as raw

 Baudline, can’t zoom in enough – best for non-burst signals

 Audacity, needs the signal scaled [-1,1], shows wrong sampling rate

 DEMO



Demodulation - signals



Digital and binary



Binary

 Perform clock recovery (reduce sample rate)

 Binary slicer

 Correlate access code

 Also consider “Correlate access code - Tag” + “Tag Debug”

 No good documented modules that help you process the data 

from that point

 Now what? Write to file?

 Sucks to work with, takes you out of GRC

 Not real time

 Followed GRC expectation to write my own module



Writing your own module

 Can be done in Python or C++

 Helper utility called “gr_modtool” – generates a template

 Module contains Blocks

 Follow 

http://gnuradio.org/redmine/projects/gnuradio/wiki/Guided_Tutoria

l_GNU_Radio_in_Python#32-Where-Do-Blocks-Come-From

 Expect Python to be slower than C++

 DEMO (code structure)

 https://github.com/ayavilevich/gr-aygarage

http://gnuradio.org/redmine/projects/gnuradio/wiki/Guided_Tutorial_GNU_Radio_in_Python#32-Where-Do-Blocks-Come-From
https://github.com/ayavilevich/gr-aygarage


Frame extractor block

 Generic helper follows “Correlate access code”

 Parameters: “pre length” and “post length”

 Prints to the console a “frame” (sequence of bits) that are 

surrounding the “access code” detection point

 Later addition: “bits to bytes” and “byte offset”

 Prints sample # and hex representation of the frame

 DEMO (execution)



Reversing - analysis

 Feed the bits to Excel

 Different types of frames

 Frames that are the same and repeat a lot – assume an “ack”

 Frames that “start” a segment and are different – assume “data”

 Statistical analysis of data

 Can still see differences,

 even for frames of same key

 later learned sometimes

 key = 0



Reversing - encoding

 Why encoding?

 Ruled out differential encoding because there are runs of 0 and of 1

 So no Manchester, etc.

 Also tried Gray code, Delay encoding, etc.

 Learned about whitening and different algorithms for that

 Was stuck!

 Read an article that mentioned that a fixed value of 0x5a is being 
used for whitening. 0x5a = 0101 1010 

 It matched and data started to make sense

 Brute-forced CRC algorithm with CRC RevEng

 http://reveng.sourceforge.net/

http://reveng.sourceforge.net/


Reversing - protocol

Events

CRC is on the green, data part

0x5A whitening applied on data and CRC part

Keyboard

AA AA D4 D9 44 F[seq] [80]1 [keycode] [wx] [yz]

Preamble Address or sync Data CRC 16bit, XMODEM

Sequence Retransmit Key / 0

Mouse

AA AA D4 D9 44 C[seq] [x1] [y1] [x2] [y2] [x3] [y3] [x4] [y4] [wx] [yz]

Preamble Address or sync Data CRC 16bit, XMODEM

Sequence Mouse moves, origin is lower left, signed bytes

Ack (from dongle)

AA AA D4 D9 44 4B 78

Preamble Address or sync Const

Repeat

AA AA EE D4 D9 44 4B 78 2A

Preamble Const Address or sync Const



Reversing - block



Summary



Challenge - frame misses

 System successfully captures only some of the packets

 Can be seen in real-time

 Sequence value skips

 Repeat bit

 Timing skips

 Troubleshooting (through manual verification) points to clock-

recovery in GRC as the cause of misses and bad bit detection

 Might not be designed for “burst”

 Possible to make a different implementation, but no plans to pursue

 Decided not to require the preamble in the parser, rely on address



Challenge - bursts

 Finding a needle in a haystack

 Sending 20 bytes at 2Mbs is just 80 micro second

 Difficult to detect devices

 Especially when sampling rate unknown

 Consider over-sampling and statistical approach to detect frames

 Squelch blocks in GRC too slow to respond – designed for speech

 Fosphor makes life easier



Conclusions

 Rapoo communications not encrypted

 As expected

 Filtering didn’t result in improvements – wide signal

 GNU Radio Companion very convenient for prototyping

 Writing your own GRC blocks is totally possible

 Python GRC blocks might be too slow for some uses



References



KeySniffer, 2016

 http://www.keysniffer.net/technical-details/

 Non Nordic chips, cheap keyboards. QFSK

 https://conference.hitb.org/hitbsecconf2016ams/materials/D1%20C

OMMSEC%20-%20Marc%20Newlin%20-

%20Applying%20Regulatory%20Data%20to%20IoT%20RF%20Reverse

%20Engineering.pdf

 Tech details

http://www.keysniffer.net/technical-details/
https://conference.hitb.org/hitbsecconf2016ams/materials/D1 COMMSEC - Marc Newlin - Applying Regulatory Data to IoT RF Reverse Engineering.pdf


KeySweeper, 2015

 http://samy.pl/keysweeper/

 https://github.com/samyk/keysweeper

 http://arstechnica.com/security/2015/01/meet-keysweeper-the-10-

usb-charger-that-steals-ms-keyboard-strokes/

http://samy.pl/keysweeper/
https://github.com/samyk/keysweeper
http://arstechnica.com/security/2015/01/meet-keysweeper-the-10-usb-charger-that-steals-ms-keyboard-strokes/


Cyber Explorer, 2014

 http://blog.cyberexplorer.me/2014/01/sniffing-and-decoding-

nrf24l01-and.html

http://blog.cyberexplorer.me/2014/01/sniffing-and-decoding-nrf24l01-and.html


KeyKeriki, 2008-2010

 http://www.remote-exploit.org/articles/keykeriki_v1_0_-_27mhz/

 http://www.remote-
exploit.org/articles/keykeriki_v2_0__8211_2_4ghz/

 http://www.remote-exploit.org/content/keykeriki_ph7d9.pdf

 http://www.remote-

exploit.org/content/keykeriki_v2_cansec_v1.1.pdf

 NRF24x, [preamble, address, flags, payload, CRC]

http://www.remote-exploit.org/articles/keykeriki_v1_0_-_27mhz/
http://www.remote-exploit.org/articles/keykeriki_v2_0__8211_2_4ghz/
http://www.remote-exploit.org/content/keykeriki_ph7d9.pdf
http://www.remote-exploit.org/content/keykeriki_v2_cansec_v1.1.pdf

