Capturing ana
reversing wireless
keyboard signal

SDR ISRAEL — MEETUP #6 — SEPTEMBER 1, 2016
ARIK YAVILEVICH

Intfroduction

» Goal: Learning more about radio by capturing and analyzing
wireless fransmissions of a wireless keyboard and mouse

Has been done before but usually not with RTL-SDR
Apparently not as easy as it might seem

Fun

vV v v Vv

Process: [dentify, capture, get bytes/bits, reverse protocol

How to do reversing

» Based on EFF Reverse Engineering FAQ
» Don't violate contracts (NDA, license agreement, etfc.)
» Own the hardware and software
» Don’'t break encryption

» If capturing data
» Publicly accessible network

» Or obtaining consent

» hittps://www.eff.org/issues/coders/reverse-engineering-fag

https://www.eff.org/issues/coders/reverse-engineering-faq

2.4Ghz space
(common ISM)

» Most of your Consumer Electronics will be in the 2.4Ghz range

» Wi-Fi

» Bluetooth

» Proprietary protocols
» Almost any device | wanted to experiment with was in this range
» Notinrange of RTL-SDR

» Wi-Fi and Bluetooth specifically are too complex to capture with RTL-
SDR (especially for a beginner)

» Wide
» Hopping

DoOwn converter

» L.O 1998MHZ MMDS down
converter 2.2-2.4GHz

» L.O Frequency: 1998MHz
» L.O Stability: <+30KHz

» Aliexpress: 12$ device, 10$
shipping, 5% power = 27%

» Came with a 18V power injector

» Can work with a battery
» Vout =8V if Vin>10.5V

» hitps://en.wikipedia.org/wiki/Digit
al down converter

https://en.wikipedia.org/wiki/Digital_down_converter

DOWN converter - inside

N g @y T, g
> t paigaratly;

DOownN converter - inside 2

Scanning

» QSpectrumAnalyzer was mostly useless
» Busy spectrum
» Didn't see all devices
» Was worse with ril_power_fftw
» Decided to focus on one device that was showing in the scanner
» Rapoo E2700 wireless keyboard and frack pad
» Fosphoris awesome (osmocom_fft —F)
» DEMO
» Try to identify visually

Scanning — screen shot

QSpectrumAnalyzer g < B v 1:31am %
Controls

Frequency

80.000

1.000 kHz

Setkings

Interval [s]: Gain [dB]:

1.00
r. [ppm]:

Smoothing

Persistence

Frequency hops: 153 | Sweep time: 11.66 s | FPS: 0.09

Gathering Info from open sources

>
>
>
>

Rapoo E2700
FCC ID: PP2E2700
hitps://fccid.io/PP2E2700

What is importante
» Frequencies
» Modulation

» Datarate

Model Difference

The EUT is a Wireless Multi-media Touchpad Keyboard.
Product Type Low Power Communication
Device

Product Description
Antenna Gain Peak} 3 49 dBi
(Output Power. ____[66.75 dBuVim (AV Max)

Based on the application, features, or specification

exhibited in User's Manual, the EUT is considered as an

ITE/Computing Device. More details of EUT technical
cification, please refer to the User's Manual.

https://fccid.io/PP2E2700

Demodulation

» One approach, ril_fm
» rtl_fm -f 447m -s 2000k -g0 > rtl_fm_dump
» You get binary: 16bit shorts, little endian
» Another approach, GnuRadio
» DEMO
» You get binary: 32bit floats, littfle endian
» Open in Audacity or Baudline as raw
» Baudline, can’'t zoom in enough — best for non-burst signals
» Audacity, needs the signal scaled [-1,1], shows wrong sampling rate
» DEMO

Demodulation - signals

4 | o [e

/

32.87680

Binary

» Perform clock recovery (reduce sample rate)
» Binary slicer
» Correlate access code
» Also consider “Correlate access code - Tag” + “Tag Debug”

» No good documented modules that help you process the data
from that point

» Now whate Write o file?
» Sucks to work with, takes you out of GRC

» Nofreal time

» Followed GRC expectation to write my own module

Writing your own module

Can be done in Python or C++
Helper utility called “gr_modtool” — generates a template
Module contains Blocks

eV V V¥V

Follow
http://agnuradio.org/redmine/projecis/anuradio/wiki/Guided Tutoria
| GNU Radio in Python#32-Where-Do-Blocks-Come-From

Expect Python to be slower than C++
» DEMO (code structure)

v

» hittps://aithub.com/ayavilevich/gr-aygarage

http://gnuradio.org/redmine/projects/gnuradio/wiki/Guided_Tutorial_GNU_Radio_in_Python#32-Where-Do-Blocks-Come-From
https://github.com/ayavilevich/gr-aygarage

Frame extractor block

» Generic helper follows “Correlate access code”
» Parameters: “pre length” and “post length”

» Prints to the console a “frame” (sequence of bits) that are
surrounding the “access code” detection point

» Later addition: “bits to bytes” and “byte offset”
» Prints sample # and hex representation of the frame
» DEMO (execution)

Reversing - analysis

» Feed the bifs to Excel
» Different types of frames

» Frames that are the same and repeat a lot — assume an “ack™

» Frames that “start” a segment and are different — assume “data”

» Statistical analysis of data

67489238

69636449

3 . 70192651

» Can still see differences,
71406708

71641371

» even for frames of same key Bl

72346428
72560255

» later learned sometimes

73021568
73081066

> ke = O 73297710
y 73556288

73836076

0O0DO0OCO0ODO0OO0OOODOOO0COO0O0OOo OO0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0o

CO0DO0DO0OOCOOODO0OODO0O0OOO0O0COGCO O o
ORRPRPRREPPRRPRRPERRRRRRRRRR B
0C00DO0OO0OO0OO0O0OO00O0O0O0O00O0O0c O O O
OCO0ODOOOOOODOODOOO0OO0O0O0C OO0 O
CO0O0DO0OCOO0ODODO0OOO0OOO00C OO0 OO0 o
OR RPRPREPPRRERRPERRRRRRRRRR B

O R RO s e e

1
1
1
000
111
111
556
#H#

HHEHAACT HEER

Reversing - encoding

» Why encoding?

v

Ruled out differential encoding because there are runs of 0 and of 1
» SO No Manchester, etc.

Also tried Gray code, Delay encoding, etc.
Learned about whitening and different algorithms for that
Was stuckl!

VeV, -V

Read an article that mentioned that a fixed value of Ox5a is being
used for whitening. Ox5a = 0101 1010

» It matched and data started o make sense
» Brute-forced CRC algorithm with CRC RevEng
» hitp://revenag.sourceforge.net/

http://reveng.sourceforge.net/

Reversing - protocol

Events
CRCis on the green, data part
0x5A whitening applied on data and CRC part
Keyboard
AA AA D4 D9 F[seq] [80]1 [keycode] [wx] [yz]
Preamble Address or sync Data CRC 16bit, XMODEM

Sequence Retransmit Key /0

AA D4 D9 C[seq] [x1] [y1] [x2] [y2] [x3] [y3] [x4] [y4] [wx] lyz]
Preamble Address or sync Data CRC 16bit, XMODEM

Sequence Mouse moves, origin is lower left, signed bytes

Ack (from dongle)
AA D4 D9

Preamble Address or sync

AA EE D4 D9

Preamble Const Address or sync

Reversing - block

simple_parse.grc - fhome/ubuntu/KB - GNU Radio Companion
X /=

simple # | simple_parse # | investigate % scan3 KB X

Options
1D: top_block
Title: FSK KB Rapoo parse
Author: Arik Yavilevich

Description: Parsi...t stream
Generate Options: OT GUI File Source Rapoo KB/mouse Parser

File: ..erty_447m_375k_bytes Filename:

Variable Repeat: No Require preamble: False

1D: fc
Value: 447M

Executing: fusr/bin/python2 -u /home/ubuntu/KB/top_block.py

gr::log :INFO: controlport - Apache Thrift: -h ubuntu-p 37397

data pre False repeat False type OxfL seq 8

key Q 16 Flags 0x81 crc True
a************************************“***************dataprEShortrEpeatFalsetypEO:a'.fLseq12
key W 24 flags 0x81 crc True
a***datapreFalserepeatFalsetyperfLseqz
key E 32 flags 0x81 crc True

a ****+****data pre Short repeat False type 0xfL seq 4

key E 32 flags 0x81 crc True
a***datapreFalserepeatFalsetyperfLseqﬁ

key R 40 Flags 0x81 crc True

a *****data pre Shorkt repeat False type 0xfL seq 8

key R 40 Flags 0x81 crc True
***datapreFalserepeatFalsetyperfLseq"IO

key T 41 flags 0x81 crc True
a*-.i-.i-.i-.i-.i*****i*********i-.i-.i-.i-.i-.ii********-.i-.i*****i*-.i-.i*****i*-.i-.idatapl—eShortrepeatFalSEtyponFLseq14
key Y 49 Flags 0x81 crc True

kR R R R R R R R R R

Challenge - frame misses

» System successfully captures only some of the packets
» Can be seen in real-time
» Sequence value skips
» Repeat bit
» Timing skips

» Troubleshooting (through manual verification) points to clock-
recovery in GRC as the cause of misses and bad bit detection

» Might not be designed for “burst”

» Possible to make a different implementation, but no plans to pursue

» Decided not to require the preamble in the parser, rely on address

Challenge - bursts

» Finding a needle in a haystack
» Sending 20 bytes at 2Mbs is just 80 micro second
» Difficult to detect devices

» Especially when sampling rate unknown

» Consider over-sampling and statistical approach to detect frames
» Squelch blocks in GRC too slow to respond — designed for speech
» Fosphor makes life easier

Conclusions

eV Vv

Rapoo communications not encrypted
» As expected
Filtering didn’t result in improvements — wide signal
GNU Radio Companion very convenient for prototyping
Writing your own GRC blocks is totally possible
Python GRC blocks might be too slow for some uses

KeySnitter, 2016

» hitp://www.keysniffer.net/technical-details/
» Non Nordic chips, cheap keyboards. QFSK

» hitps://conference.hitb.org/hitbsecconf2016ams/materials/D1%20C

OMMSEC%20-%20Marc%20Newlin%20-
%20Applying%20Regulatory%20Data%20t0%20l0T%20RF%20Reverse

%20Engineering.pdf
» Tech details

http://www.keysniffer.net/technical-details/
https://conference.hitb.org/hitbsecconf2016ams/materials/D1 COMMSEC - Marc Newlin - Applying Regulatory Data to IoT RF Reverse Engineering.pdf

Keysweeper, 2

http://samy.pl/keysweeper/
https://github.com/samyk/keysweeper
http://arstechnica.com/security/2015/01/meet-keysweeper-the-10-usb-charger-that-steals-ms-keyboard-strokes/

Cyber Explorer, -

» hitp://blog.cy
nrf24101-anc

http://blog.cyberexplorer.me/2014/01/sniffing-and-decoding-nrf24l01-and.html

KeyKeriki, 2008-2010

» hittp://www.remote-exploit.org/articles/keykeriki vl 0 - 27/mhz/

» hitp://www.remote-
exploit.org/articles/kevkeriki v2 0 8211 2 4ghz/

» hitp://www.remote-exploit.org/content/kevkeriki ph7d9%.odf

» hitp://www.remote-
exploit.ora/content/keykeriki v2 cansec vl.l.pdf

» NRF24x, [preamble, address, flags, payload, CRC]

http://www.remote-exploit.org/articles/keykeriki_v1_0_-_27mhz/
http://www.remote-exploit.org/articles/keykeriki_v2_0__8211_2_4ghz/
http://www.remote-exploit.org/content/keykeriki_ph7d9.pdf
http://www.remote-exploit.org/content/keykeriki_v2_cansec_v1.1.pdf

