Capturing and reversing wireless keyboard signal SDR ISRAEL - MEETUP #6 - SEPTEMBER 1, 2016 **ARIK YAVILEVICH**

Introduction

- Goal: Learning more about radio by capturing and analyzing wireless transmissions of a wireless keyboard and mouse
- Has been done before but usually not with RTL-SDR
- Apparently not as easy as it might seem
- Fun
- Process: Identify, capture, get bytes/bits, reverse protocol

How to do reversing

Based on EFF Reverse Engineering FAQ

- Don't violate contracts (NDA, license agreement, etc.)
- Own the hardware and software
- Don't break encryption
- If capturing data
 - Publicly accessible network
 - Or obtaining consent

https://www.eff.org/issues/coders/reverse-engineering-faq

Identify and capture

2.4Ghz space (common ISM)

- Most of your Consumer Electronics will be in the 2.4Ghz range
 - ► Wi-Fi
 - Bluetooth
 - Proprietary protocols
- Almost any device I wanted to experiment with was in this range
- Not in range of RTL-SDR
- Wi-Fi and Bluetooth specifically are too complex to capture with RTL-SDR (especially for a beginner)
 - ► Wide
 - Hopping

Down converter

- L.O 1998MHZ MMDS down converter 2.2-2.4GHz
 - ► L.O Frequency: 1998MHz
 - ► L.O Stability: ≤±30KHz
- Aliexpress: 12\$ device, 10\$ shipping, 5\$ power = 27\$
- Came with a 18V power injector
- Can work with a battery
 - Vout = 8V if Vin>10.5V
- https://en.wikipedia.org/wiki/Digit al_down_converter

Down converter - inside

Down converter - inside 2

Scanning

QSpectrumAnalyzer was mostly useless

- Busy spectrum
- Didn't see all devices
- Was worse with rtl_power_fftw
- Decided to focus on one device that was showing in the scanner
 - Rapoo E2700 wireless keyboard and track pad
- Fosphor is awesome (osmocom_fft –F)
- ► DEMO
 - Try to identify visually

Scanning – screen shot

Gathering info from open sources

- ▶ Rapoo E2700
- ► FCC ID: PP2E2700
- https://fccid.io/PP2E2700
- What is important?
 - ► Frequencies
 - Modulation
 - Data rate

Equipment	Wireless Multi-media Touchpad Keyboard						
Brand Name	RAPOO						
Model Name.	E2700						
OEM Brand/Model Name	N/A						
Model Difference	N/A						
	The EUT is a Wireless Multi-media Touchpad Keyboard.						
	Floduct Type	Device					
	Operation Frequency:	2408~2474 MHz					
	Modulation Type:	FSK					
	Date rate:	375Kbps					
	Number of Channel	67CH .Please see Note 2.					
Product Description	Antenna Designation:	Integral antenna					
	Antenna Gain(Peak)	3.49 dBi					
	Output Power:	66.75 dBuV/m (AV Max.)					
	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.						
Channel List	Please refer to the Note 2.						
Power Source	DC Voltage supplied from 2*AAA Battery						
Power Rating	DC 1.5V						
Connecting I/O Port(s)	Please refer to the User's Manual						

Demodulation

One approach, rtl_fm

- rtl_fm -f 447m -s 2000k -g0 > rtl_fm_dump
- > You get binary: 16bit shorts, little endian
- Another approach, GnuRadio
 - ► DEMO
 - You get binary: 32bit floats, little endian
- Open in Audacity or Baudline as raw
 - Baudline, can't zoom in enough best for non-burst signals
 - Audacity, needs the signal scaled [-1,1], shows wrong sampling rate
 - ► DEMO

Demodulation - signals

Digital and binary

Binary

Perform clock recovery (reduce sample rate)

- ► Binary slicer
- Correlate access code
 - Also consider "Correlate access code Tag" + "Tag Debug"
- No good documented modules that help you process the data from that point
- Now what? Write to file?
 - Sucks to work with, takes you out of GRC
 - Not real time
- Followed GRC expectation to write my own module

Writing your own module

- Can be done in Python or C++
- Helper utility called "gr_modtool" generates a template
- Module contains Blocks
- ► Follow

http://gnuradio.org/redmine/projects/gnuradio/wiki/Guided_Tutoria I_GNU_Radio_in_Python#32-Where-Do-Blocks-Come-From

- Expect Python to be slower than C++
- DEMO (code structure)

https://github.com/ayavilevich/gr-aygarage

Frame extractor block

- Generic helper follows "Correlate access code"
- Parameters: "pre length" and "post length"
- Prints to the console a "frame" (sequence of bits) that are surrounding the "access code" detection point
- Later addition: "bits to bytes" and "byte offset"
- Prints sample # and hex representation of the frame
- DEMO (execution)

Reversing - analysis

Feed the bits to Excel

- Different types of frames
 - Frames that are the same and repeat a lot assume an "ack"
 - Frames that "start" a segment and are different assume "data"
- Statistical analysis of data
- Can still see differences,
 - even for frames of same key
 - Iater learned sometimes
 - ▶ key = 0

Reversing - encoding

Why encoding?

Ruled out differential encoding because there are runs of 0 and of 1

So no Manchester, etc.

- Also tried Gray code, Delay encoding, etc.
- Learned about whitening and different algorithms for that

Was stuck!

- Read an article that mentioned that a fixed value of 0x5a is being used for whitening. 0x5a = 0101 1010
 - It matched and data started to make sense
- Brute-forced CRC algorithm with CRC RevEng
 - <u>http://reveng.sourceforge.net/</u>

Reversing - protocol

Events	CRC is on t 0x5A white	he green, da ening applie	ata part d on data a	nd CRC part												
Keyboard	AA	АА	D4	D9	44	F[sea]	[80]1	[kevcode]	[wx]	[vz]						
	Preamble		Address o	r sync		Data	[]-	[,]	CRC 16bit,	XMODEM						
						Sequence	Retransmit	t Key / 0								
Mouse															_	
	AA	AA	D4	D9	44	C[seq]	[x1]	[y1]	[x2]	[y2]	[x3]	[y3]	[x4]	[y4]	[wx]	[yz]
	Preamble	amble Address or sync			Data	Ita CRC 1						CRC 16bit,	l6bit, XMODEM			
		Sequence Mouse moves, origin is lower left, signed byte					signed bytes	S								
Ack (from	dongle)															
	AA	AA	D4	D9	44	4B	78									
	Preamble		Address or sync		Const											
Repeat																
	AA	AA	EE	D4	D9	44	4B	78	2A							
	Preamble		Const	Address or	sync		Const									

Reversing - block

😣 🖨 💷 simple_parse.grc - /home/ubuntu/KB - GNU Radio Companion								
📮 🛛 🖡	- 🖄 🗙	1 🖉 😫 🗶 👘			\$ 🕨 😣 🛛 «	> -4 -4 [» 📓 🛛	
simple 🗶	simple_parse 🗱	investigate 🗶 scan 🗶	КВ 🕱					
Og ID: top_bloc Title: FSK K Author: Aril Description Generate C Variable ID: fc Value: 447M	ptions k B Rapoo parse k Yavilevich 1: Parsit stream Options: QT GUI	File Source File:erty_447m_375 Repeat: No	<_bytes	Rapoo K Filename Require	B/mouse Parser :: preamble: False			
gr::log :INFC data pre Fal key Q 16 flaq a * * * * * * * key W 24 fla a * * * * * * key E 32 flag a * * * * * * key R 40 flag a * * * * * da key R 40 flag * * * * * *	usr/bin/python2 -u c: controlport - Ap se repeat False typ gs 0x81 crc True ************* gs 0x81 crc True * data pre Short re gs 0x81 crc True ************************************	<pre>i/home/ubuntu/KB/top_blo ache Thrift: -h ubuntu -p 373 pe 0xfL seq 8 ************************************</pre>	ock.py ************* **********************	** * * * * * data pre	e Short repeat Fals * data pre False rep lse repeat False ty	e type 0xfL seq 12 peat False type 0xfL ype 0xfL seq 6	seq 2	
key T 41 flags 0x81 crc True a * * * * * * * * * * * * * * * * * * *								
key Y 49 flags 0x81 crc True								

Challenge - frame misses

System successfully captures only some of the packets

- Can be seen in real-time
- Sequence value skips
- Repeat bit
- Timing skips
- Troubleshooting (through manual verification) points to clockrecovery in GRC as the cause of misses and bad bit detection
 - Might not be designed for "burst"
 - Possible to make a different implementation, but no plans to pursue
- Decided not to require the preamble in the parser, rely on address

Challenge - bursts

- Finding a needle in a haystack
- Sending 20 bytes at 2Mbs is just 80 micro second
- Difficult to detect devices
 - Especially when sampling rate unknown
 - Consider over-sampling and statistical approach to detect frames
- Squelch blocks in GRC too slow to respond designed for speech
- Fosphor makes life easier

Conclusions

- Rapoo communications not encrypted
 - ► As expected
- Filtering didn't result in improvements wide signal
- GNU Radio Companion very convenient for prototyping
- Writing your own GRC blocks is totally possible
- Python GRC blocks might be too slow for some uses

KeySniffer, 2016

http://www.keysniffer.net/technical-details/

- ► Non Nordic chips, cheap keyboards. QFSK
- https://conference.hitb.org/hitbsecconf2016ams/materials/D1%20C OMMSEC%20-%20Marc%20Newlin%20-%20Applying%20Regulatory%20Data%20to%20IoT%20RF%20Reverse %20Engineering.pdf

► Tech details

KeySweeper, 2015

- http://samy.pl/keysweeper/
- https://github.com/samyk/keysweeper
- http://arstechnica.com/security/2015/01/meet-keysweeper-the-10usb-charger-that-steals-ms-keyboard-strokes/

Cyber Explorer, 2014

http://blog.cyberexplorer.me/2014/01/sniffing-and-decodingnrf24l01-and.html

KeyKeriki, 2008-2010

- http://www.remote-exploit.org/articles/keykeriki_v1_0_-_27mhz/
- <u>http://www.remote-</u> <u>exploit.org/articles/keykeriki_v2_0_8211_2_4ghz/</u>
- http://www.remote-exploit.org/content/keykeriki_ph7d9.pdf
- <u>http://www.remote-</u> exploit.org/content/keykeriki_v2_cansec_v1.1.pdf
 - NRF24x, [preamble, address, flags, payload, CRC]