
Capturing and 

reversing wireless 

keyboard signal
SDR ISRAEL – MEETUP #6 – SEPTEMBER 1, 2016

ARIK YAVILEVICH



Introduction

 Goal: Learning more about radio by capturing and analyzing 

wireless transmissions of a wireless keyboard and mouse

 Has been done before but usually not with RTL-SDR

 Apparently not as easy as it might seem

 Fun

 Process: Identify, capture, get bytes/bits, reverse protocol



How to do reversing

 Based on EFF Reverse Engineering FAQ

 Don’t violate contracts (NDA, license agreement, etc.)

 Own the hardware and software

 Don’t break encryption

 If capturing data

 Publicly accessible network

 Or obtaining consent

 https://www.eff.org/issues/coders/reverse-engineering-faq

https://www.eff.org/issues/coders/reverse-engineering-faq


Identify and capture



2.4Ghz space

(common ISM)

 Most of your Consumer Electronics will be in the 2.4Ghz range

 Wi-Fi

 Bluetooth

 Proprietary protocols

 Almost any device I wanted to experiment with was in this range

 Not in range of RTL-SDR

 Wi-Fi and Bluetooth specifically are too complex to capture with RTL-

SDR (especially for a beginner)

 Wide

 Hopping



Down converter

 L.O 1998MHZ MMDS down 

converter 2.2-2.4GHz

 L.O Frequency: 1998MHz

 L.O Stability: ≤±30KHz 

 Aliexpress: 12$ device, 10$ 

shipping, 5$ power = 27$

 Came with a 18V power injector

 Can work with a battery

 Vout = 8V if Vin>10.5V

 https://en.wikipedia.org/wiki/Digit

al_down_converter

https://en.wikipedia.org/wiki/Digital_down_converter


Down converter - inside



Down converter - inside 2



Scanning

 QSpectrumAnalyzer was mostly useless

 Busy spectrum

 Didn’t see all devices

 Was worse with rtl_power_fftw

 Decided to focus on one device that was showing in the scanner

 Rapoo E2700 wireless keyboard and track pad

 Fosphor is awesome (osmocom_fft –F)

 DEMO

 Try to identify visually



Scanning – screen shot



Gathering info from open sources

 Rapoo E2700

 FCC ID: PP2E2700

 https://fccid.io/PP2E2700

 What is important?

 Frequencies

 Modulation

 Data rate

https://fccid.io/PP2E2700


Demodulation

 One approach, rtl_fm

 rtl_fm -f 447m -s 2000k -g0 > rtl_fm_dump

 You get binary: 16bit shorts, little endian

 Another approach, GnuRadio

 DEMO

 You get binary: 32bit floats, little endian

 Open in Audacity or Baudline as raw

 Baudline, can’t zoom in enough – best for non-burst signals

 Audacity, needs the signal scaled [-1,1], shows wrong sampling rate

 DEMO



Demodulation - signals



Digital and binary



Binary

 Perform clock recovery (reduce sample rate)

 Binary slicer

 Correlate access code

 Also consider “Correlate access code - Tag” + “Tag Debug”

 No good documented modules that help you process the data 

from that point

 Now what? Write to file?

 Sucks to work with, takes you out of GRC

 Not real time

 Followed GRC expectation to write my own module



Writing your own module

 Can be done in Python or C++

 Helper utility called “gr_modtool” – generates a template

 Module contains Blocks

 Follow 

http://gnuradio.org/redmine/projects/gnuradio/wiki/Guided_Tutoria

l_GNU_Radio_in_Python#32-Where-Do-Blocks-Come-From

 Expect Python to be slower than C++

 DEMO (code structure)

 https://github.com/ayavilevich/gr-aygarage

http://gnuradio.org/redmine/projects/gnuradio/wiki/Guided_Tutorial_GNU_Radio_in_Python#32-Where-Do-Blocks-Come-From
https://github.com/ayavilevich/gr-aygarage


Frame extractor block

 Generic helper follows “Correlate access code”

 Parameters: “pre length” and “post length”

 Prints to the console a “frame” (sequence of bits) that are 

surrounding the “access code” detection point

 Later addition: “bits to bytes” and “byte offset”

 Prints sample # and hex representation of the frame

 DEMO (execution)



Reversing - analysis

 Feed the bits to Excel

 Different types of frames

 Frames that are the same and repeat a lot – assume an “ack”

 Frames that “start” a segment and are different – assume “data”

 Statistical analysis of data

 Can still see differences,

 even for frames of same key

 later learned sometimes

 key = 0



Reversing - encoding

 Why encoding?

 Ruled out differential encoding because there are runs of 0 and of 1

 So no Manchester, etc.

 Also tried Gray code, Delay encoding, etc.

 Learned about whitening and different algorithms for that

 Was stuck!

 Read an article that mentioned that a fixed value of 0x5a is being 
used for whitening. 0x5a = 0101 1010 

 It matched and data started to make sense

 Brute-forced CRC algorithm with CRC RevEng

 http://reveng.sourceforge.net/

http://reveng.sourceforge.net/


Reversing - protocol

Events

CRC is on the green, data part

0x5A whitening applied on data and CRC part

Keyboard

AA AA D4 D9 44 F[seq] [80]1 [keycode] [wx] [yz]

Preamble Address or sync Data CRC 16bit, XMODEM

Sequence Retransmit Key / 0

Mouse

AA AA D4 D9 44 C[seq] [x1] [y1] [x2] [y2] [x3] [y3] [x4] [y4] [wx] [yz]

Preamble Address or sync Data CRC 16bit, XMODEM

Sequence Mouse moves, origin is lower left, signed bytes

Ack (from dongle)

AA AA D4 D9 44 4B 78

Preamble Address or sync Const

Repeat

AA AA EE D4 D9 44 4B 78 2A

Preamble Const Address or sync Const



Reversing - block



Summary



Challenge - frame misses

 System successfully captures only some of the packets

 Can be seen in real-time

 Sequence value skips

 Repeat bit

 Timing skips

 Troubleshooting (through manual verification) points to clock-

recovery in GRC as the cause of misses and bad bit detection

 Might not be designed for “burst”

 Possible to make a different implementation, but no plans to pursue

 Decided not to require the preamble in the parser, rely on address



Challenge - bursts

 Finding a needle in a haystack

 Sending 20 bytes at 2Mbs is just 80 micro second

 Difficult to detect devices

 Especially when sampling rate unknown

 Consider over-sampling and statistical approach to detect frames

 Squelch blocks in GRC too slow to respond – designed for speech

 Fosphor makes life easier



Conclusions

 Rapoo communications not encrypted

 As expected

 Filtering didn’t result in improvements – wide signal

 GNU Radio Companion very convenient for prototyping

 Writing your own GRC blocks is totally possible

 Python GRC blocks might be too slow for some uses



References



KeySniffer, 2016

 http://www.keysniffer.net/technical-details/

 Non Nordic chips, cheap keyboards. QFSK

 https://conference.hitb.org/hitbsecconf2016ams/materials/D1%20C

OMMSEC%20-%20Marc%20Newlin%20-

%20Applying%20Regulatory%20Data%20to%20IoT%20RF%20Reverse

%20Engineering.pdf

 Tech details

http://www.keysniffer.net/technical-details/
https://conference.hitb.org/hitbsecconf2016ams/materials/D1 COMMSEC - Marc Newlin - Applying Regulatory Data to IoT RF Reverse Engineering.pdf


KeySweeper, 2015

 http://samy.pl/keysweeper/

 https://github.com/samyk/keysweeper

 http://arstechnica.com/security/2015/01/meet-keysweeper-the-10-

usb-charger-that-steals-ms-keyboard-strokes/

http://samy.pl/keysweeper/
https://github.com/samyk/keysweeper
http://arstechnica.com/security/2015/01/meet-keysweeper-the-10-usb-charger-that-steals-ms-keyboard-strokes/


Cyber Explorer, 2014

 http://blog.cyberexplorer.me/2014/01/sniffing-and-decoding-

nrf24l01-and.html

http://blog.cyberexplorer.me/2014/01/sniffing-and-decoding-nrf24l01-and.html


KeyKeriki, 2008-2010

 http://www.remote-exploit.org/articles/keykeriki_v1_0_-_27mhz/

 http://www.remote-
exploit.org/articles/keykeriki_v2_0__8211_2_4ghz/

 http://www.remote-exploit.org/content/keykeriki_ph7d9.pdf

 http://www.remote-

exploit.org/content/keykeriki_v2_cansec_v1.1.pdf

 NRF24x, [preamble, address, flags, payload, CRC]

http://www.remote-exploit.org/articles/keykeriki_v1_0_-_27mhz/
http://www.remote-exploit.org/articles/keykeriki_v2_0__8211_2_4ghz/
http://www.remote-exploit.org/content/keykeriki_ph7d9.pdf
http://www.remote-exploit.org/content/keykeriki_v2_cansec_v1.1.pdf

